
General Relativity: Solutions to exercises in
Lecture XIII

Ziri Younsi

Winter Semester 2015–2016

Exercise 1

Consider the spherically symmetric static line element

ds2 = −A(r) dt2 +B(r) dr2 + C(r) dΩ2 , (1)

and compute the expressions for the non-zero Christoffel symbols. Use this result to compute the 00
covariant component of the Einstein equations in vacuum, i.e. Rµν = 0.

Solution 1

• Whilst one may calculate the Christoffel symbol components directly, we will derive them from
the Lagrangian for the metric. First let us write the Lagrangian as

L =
1

2

(
−A ṫ2 +B ṙ2 + C θ̇2 + C sin2 θ φ̇2

)
, (2)

where the dependence of A, B and C on r has been omitted for brevity and an overdot denotes
differentiation with respect to the affine parameter, λ. We now systematically derive the Euler-
Lagrange equations of motion for each of the four components of our metric. For the t component:

∂L
∂t

= 0 , (3)

∂L
∂ṫ

= −A ṫ , (4)

d

dλ

(
∂L
∂ṫ

)
= −A′ ṙ ṫ− A ẗ , (5)

where primed quantities denote differentiation with respect to r. Thus from the Euler-Lagrange
equations we obtain the geodesic equation of motion for t as

ẗ = −
(
A′

A

)
ṙ ṫ . (6)
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This may be immediately compared to the geodesic equation of motion for t, yielding the non-zero
Christoffel symbol components as

Γttr = Γtrt =
1

2

(
A′

A

)
. (7)

Next we consider the r component of the Euler-Lagrange equations, yielding

∂L
∂r

=
1

2

(
−A′ ṫ2 +B′ ṙ2 + C ′ θ̇2 + C ′ sin2 θ φ̇2

)
, (8)

∂L
∂ṙ

= B ṙ ṫ , (9)

d

dλ

(
∂L
∂ṙ

)
= B′ ṙ2 +B r̈ . (10)

We may now write the geodesic equation of motion for r as

r̈ = −1

2

(
A′

B

)
ṫ2 − 1

2

(
B′

B

)
ṙ2 +

1

2

(
C ′

B

)
θ̇2 +

1

2

(
C ′

B

)
sin2 θ φ̇2 , (11)

from which we directly obtain the Christoffel symbols as

Γrtt =
1

2

(
A′

B

)
, (12)

Γrrr =
1

2

(
B′

B

)
, (13)

Γrθθ = −1

2

(
C ′

B

)
, (14)

Γrφφ = −1

2

(
C ′

B

)
sin2 θ . (15)

Now considering the θ component of the Euler-Lagrange equations we obtain

∂L
∂θ

= C sin θ cos θ φ̇2 , (16)

∂L
∂θ̇

= C θ̇ ṫ , (17)

d

dλ

(
∂L
∂θ̇

)
= C ′ ṙ θ̇ + C θ̈ . (18)

We may now write the geodesic equation of motion for θ as

θ̈ = −
(
C ′

C

)
ṙ θ̇ + sin θ cos θ φ̇2 , (19)

from which we directly obtain the Christoffel symbols as

Γθrθ = Γθθr =
1

2

(
C ′

C

)
, (20)

Γθφφ = − sin θ cos θ . (21)
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Finally, we consider the φ component of the Euler-Lagrange equations, obtaining

∂L
∂φ

= 0 , (22)

∂L
∂φ̇

= C sin2 θ ṫ φ̇ , (23)

d

dλ

(
∂L
∂φ̇

)
= C ′ sin2 θ ṙ φ̇+ C sin 2θ θ̇ φ̇+ C sin2 θ φ̈ . (24)

We may now write the geodesic equation of motion for φ as

φ̈ = −
(
C ′

C

)
ṙ θ̇ − 2 cotθ θ̇ φ̇ , (25)

from which we directly obtain the remaining non-zero Christoffel symbols as

Γφrφ = Γφφr =
1

2

(
C ′

C

)
, (26)

Γφθφ = Γφφθ = cotθ . (27)

• For the second part of the question, recall the definition of the Riemann curvature tensor

Rα
βγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ

α
µγ − ΓµβγΓ

α
µδ . (28)

The Ricci tensor is then defined as

Rβδ = Rα
βαδ

= Γαβδ,α − Γαβα,δ + ΓµβδΓ
α
µα − ΓµβαΓαµδ . (29)

The covariant 00 component may now be written as

R00 = Γα00,α −��
��*

0
Γα0α,0 + Γµ00Γ

α
µα − Γµ0αΓαµ0

= Γα00,α + Γµ00Γ
α
µα − Γµ0αΓαµ0

= Γr00,r + Γr00Γ
α
rα − Γµ0αΓαµ0

= Γr00,r + Γr00Γ
α
rα − Γµ00Γ

0
µ0 − Γµ0rΓ

r
µ0

= Γr00,r + Γr00Γ
α
rα − Γr00Γ

0
r0 − Γ0

0rΓ
r
00

= Γr00,r + Γr00Γ
α
rα − 2Γr00Γ

0
r0

= Γr00,r + Γr00

(
Γ0

r0 + Γrrr + Γθrθ + Γφrφ

)
− 2Γr00Γ

0
r0

= Γr00,r + Γr00

(
Γrrr + Γθrθ + Γφrφ − Γ0

r0

)
. (30)

Substituting the values for the Christoffel symbol components into equation (30) we obtain, upon
simplification

R00 =
1

2

A′′

B
+

1

4

A′

B

[
2
C ′

C
− A′

A
− B′

B

]
. (31)
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For completeness, the remaining non-zero covariant components of the Ricci tensor are

R11 = −1

2

A′′

A
− C ′′

C
+

1

4

A′

A

(
A′

A
+
B′

B

)
+

1

2

C ′

C

(
C ′

C
+
B′

B

)
, (32)

R22 = 1− 1

2

C ′′

B
+

1

4

C ′

B

(
B′

B
− A′

A

)
, (33)

R33 = R22 sin2 θ . (34)

Exercise 2

Using the Lagrangian
2L = gαβẋ

αẋβ , (35)

where an overdot corresponds to differentiation with respect to the proper time, show that the geodesic
equations

ẍα + Γαβγẋ
βẋγ = 0 , (36)

are equivalent to the Euler-Lagrange equations

∂L
∂xα
− d

dτ

(
∂L
∂ẋα

)
= 0 . (37)

Solution 2

Let us first calculate the first term in equation (37):

∂L
∂xγ

=
1

2
gαβ,γẋ

αẋβ . (38)

Now we consider the bracketed second term:

∂L
∂ẋγ

=
1

2
gαβ
(
δαγ ẋ

β + ẋαδβγ
)

=
1

2

(
gγβẋ

β + ẋαgαγ
)

= gαγẋ
α . (39)

Finally, we differentiate equation (39) with respect to proper time, yielding:

d

dτ

(
∂L
∂ẋγ

)
=

d

dτ
(gαγ) ẋ

α + gαγẍ
α

= ẋδgαγ,δẋ
α + gαγẍ

α

= gαγ,δẋ
δẋα + gαγẍ

α . (40)

Now we may write down the Euler-Lagrange equations, and solving for ẍα we obtain

gαγẍ
α =

1

2
gαβ,γẋ

αẋβ − gαγ,δẋδẋα

=
1

2
gαβ,γẋ

αẋβ − 1

2

(
gαγ,δẋ

δẋα + gδγ,αẋ
δẋα
)
, (41)
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where we have made use of the symmetry under interchange of δ ↔ α in the second term on the right
hand side. Since δ is a dummy index we may relabel it as δ → β, yielding

gαγẍ
α =

1

2
(gαβ,γ − gαγ,β − gβγ,α) ẋαẋβ . (42)

Multiplying both sides by gγµ, using the identity gαγg
γµ = δµα and bringing all terms to the left hand

side we obtain

ẍµ +
1

2
gγµ (gαγ,β + gβγ,α − gαβ,γ) ẋαẋβ = 0 . (43)

It is straightforward to confirm that the term multiplying ẋαẋβ is precisely Γµβα = Γµαβ and thus we
obtain

ẍµ + Γµαβẋ
αẋβ = 0 , (44)

which is the geodesic equation of motion, as required.

Exercise 3

Optional : Using the Einstein-Hilbert action

S =

∫
d4x
√
−g R , (45)

show that the application of a variational principle δS = 0 yields the Einstein field equations in vacuum,
i.e.

Rµν −
1

2
gµνR = 0 . (46)

Solution 3

First we may write

δS = 0 ⇐⇒ δ

∫
d4x
√
−g R = 0 . (47)

Now let us vary
√
−g , yielding

δ
(√
−g
)

= − δg

2
√
−g

. (48)

Now recall from Problem Sheet 7, Exercise 3, part 4, we proved the following result:

(ln |g|),α = gµνgµν,α . (49)

This implies that
g,α = g gµνgµν,α , (50)

and thus we may write δg as

δg = g gµν δgµν

= −g gµν δgµν . (51)
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We may now write δ (
√
−g ) as:

δ
(√
−g
)

=
g gµν δg

µν

2
√
−g

= −1

2

(−g)√
−g

gµν δg
µν

= −1

2

√
−g gµν δgµν . (52)

We must next consider the variation of the Ricci scalar R = gµνRµν . We may write this as

δR = δgµνRµν + gµν δRµν . (53)

Substituting equations (52) and (53) into equation (47) yields:

δ

∫
d4x
√
−g R =

∫
d4x

[
δ
(√
−g
)
R +

√
−g δR

]
=

∫
d4x
√
−g

[
−1

2
gµν δg

µν R + (δgµνRµν + gµνδRµν)

]
=

∫
d4x
√
−g

[
δgµν

(
Rµν −

1

2
gµν R

)
+ gµν δRµν

]
=

∫
d4x
√
−g (δgµν Gµν + gµν δRµν) = 0 , (54)

where Gµν ≡
(
Rµν − 1

2
gµν R

)
is the Einstein tensor. It is now clear that in order for us to obtain the

Einstein field equations in vacuum, the second term in brackets in equation (54) must vanish.
Let us now turn our attention to the variation of the Ricci tensor, δRµν . First, recall the definition

of the Riemann curvature tensor

Rµ
ναβ = Γµνβ,α + ΓµραΓρνβ − Γµνα,β − ΓµρβΓρνα . (55)

Next, consider the variation of the Riemann curvature tensor:

δRµ
ναβ = ∂α

(
δΓµνβ

)
+
(
δΓµρα

)
Γρνβ + Γµρα

(
δΓρνβ

)
− ∂β (δΓµνα)−

(
δΓµρβ

)
Γρνα − Γµρβ (δΓρνα) . (56)

This expression can be written much more succinctly in terms of covariant derivatives. The first and
fourth terms contains a partial derivative, so we consider the following:

∇α

(
δΓµνβ

)
= ∂α

(
δΓµνβ

)
+ Γµαρ

(
δΓρνβ

)
− Γραν

(
δΓµρβ

)
− Γραβ

(
δΓµνρ

)
, (57)

∇β (δΓµνα) = ∂β (δΓµνα) + Γµβρ (δΓρνα)− Γρβν
(
δΓµρα

)
− Γραβ

(
δΓµνρ

)
. (58)

It immediately follows that the difference between equations (57) and (58) enables equation (56) to be
written as

δRµ
ναβ = ∇α

(
δΓµνβ

)
−∇β (δΓµνα) . (59)

We may now calculate δRµν as follows:

δRνβ = δRα
ναβ

= ∇α

(
δΓανβ

)
−∇β (δΓανα) , (60)
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and thus we obtain upon relabelling indices (β ↔ ν followed by β → µ):

δRµν = ∇α

(
δΓαµν

)
−∇ν

(
δΓαµα

)
. (61)

We may now write the second term in brackets in equation (54) as:

gµν δRµν = ∇α

(
gµνδΓαµν

)
−∇ν

(
gµνδΓαµα

)
= ∇α

(
gµνδΓαµν − gµαδΓνµν

)
, (62)

where we have let α↔ ν in the second term. We may now write the second term in equation (54) as∫
d4x
√
−g gµν δRµν =

∫
d4x
√
−g ∇α

(
gµνδΓαµν − gµαδΓνµν

)
. (63)

To proceed further, recall Problem Sheet 7, Exercise 3, part 5, where we proved the following identity:

Aα;α =
1√
−g

(√
−g Aα

)
,α
. (64)

We may define Aα from equation (63) as

Aα = gµνδΓαµν − gµαδΓνµν , (65)

which enables us to rewrite equation (63) as∫
d4x
√
−g gµν δRµν =

∫
d4x∂α

(√
−g Aα

)
= 0 , (66)

since this is a surface integral, yielding a constant boundary term, and by Stokes’s Theorem vanishes.
We may finally write

δS =

∫
d4x
√
−g δgµν Gµν = 0 , (67)

and so we may conclude that

Gµν = Rµν −
1

2
gµν R = 0 , (68)

i.e. the Einstein field equations in vacuum, as required.
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