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Exercise 1
Consider the spherically symmetric static line element

ds* = —A(r)dt* + B(r)dr? + C(r) dQ* , (1)
and compute the expressions for the non-zero Christoffel symbols. Use this result to compute the 00
covariant component of the Einstein equations in vacuum, i.e. R,, = 0.

Solution 1

e Whilst one may calculate the Christoffel symbol components directly, we will derive them from
the Lagrangian for the metric. First let us write the Lagrangian as
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£:§(—At2+B7‘2+C«92+CSiH2€(bz) , (2)
where the dependence of A, B and C on r has been omitted for brevity and an overdot denotes

differentiation with respect to the affine parameter, \. We now systematically derive the Euler-
Lagrange equations of motion for each of the four components of our metric. For the t component:

oL

oL .

= , )
d [oc o

where primed quantities denote differentiation with respect to r. Thus from the Euler-Lagrange
equations we obtain the geodesic equation of motion for ¢ as

o (%’)mi. (6)



This may be immediately compared to the geodesic equation of motion for ¢, yielding the non-zero
Christoffel symbol components as

1 (A
Fttr = Ftrt = 5 <Z) : (7)
Next we consider the » component of the Euler-Lagrange equations, yielding
a[, . ]- 112 ! -2 ! N2 ! a2 12
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We may now write the geodesic equation of motion for r as

LA, LB\, 1[CN\s 1/(CN .5,
7= 2(B)t 2(B>T +2<B)0 +2<B>sm€¢, (11)

from which we directly obtain the Christoffel symbols as

- % (%’) 7 (12)
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r, - (§> ’ (13)
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[y = —% (%) sin@ . (15)

Now considering the § component of the Euler-Lagrange equations we obtain

% = ('sinf cosf? (16)

% = Coi, (17)
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We may now write the geodesic equation of motion for 6 as

/
9:—<%)7’9+Sin00089¢2, (19)
from which we directly obtain the Christoffel symbols as
1/
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F9¢¢ = —sinfcosf . (21)



Finally, we consider the ¢ component of the Euler-Lagrange equations, obtaining
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We may now write the geodesic equation of motion for ¢ as
. o .
gb:—(a)f"Q—ZcotHHqﬁ, (25)
from which we directly obtain the remaining non-zero Christoffel symbols as
1/’
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[ =T%, = cotf . (27)

e For the second part of the question, recall the definition of the Riemann curvature tensor

Rg5 =T %y = Ty 5 + Ty — T s (28)

The Ricci tensor is then defined as

RBE = Raﬁaé

= Faﬁé,a - Faﬁa,é + Fuﬂsza - Fuﬁarzé . (29)

The covariant 00 component may now be written as
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Substituting the values for the Christoffel symbol components into equation (30| we obtain, upon

simplification

Ry = 5— +

14”7 1A .C" A B
2B ZE{ } (31)



For completeness, the remaining non-zero covariant components of the Ricci tensor are

R — _lA_”_O_”+1£/ él_i_gl +1g g+£’ (32)
T 24 ¢ "44\4 " B) ' '2c\cCc " B)"
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R = 1‘55%?(5—2)’ (33)
R33 = R22 SiHZQ . (34)
Exercise 2
Using the Lagrangian
2L = gopi®i’ (35)

where an overdot corresponds to differentiation with respect to the proper time, show that the geodesic
equations

i+ T80 =0, (36)
are equivalent to the Euler-Lagrange equations
oL d (oL
e dr (37) =0 (37)

Solution 2

Let us first calculate the first term in equation :

oL 1
a3 - = 3908l T

oxy 2 (38)

Now we consider the bracketed second term:
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D) (gwx‘ﬁ + x'agow)

= Gard® (39)

Finally, we differentiate equation (39) with respect to proper time, yielding:
d (0L d (Gun) % + guni®
— =) = —(9u)x oy L
dr \ 0z dr Joy Joy
= iﬁgav,éiﬂ + gcw:i

= oy 580 + Gand® (40)
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Now we may write down the Euler-Lagrange equations, and solving for £ we obtain

e co s .5 -
JayT = 59046,756 $ﬂ — Jany, 6T T

1 o 1 5. 5.
= 59045#1"&‘%‘6 - 5 (ga%cslﬁxa + gé%alﬁxa) , (41>
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where we have made use of the symmetry under interchange of § <+ a in the second term on the right
hand side. Since ¢ is a dummy index we may relabel it as 6 — (3, yielding

1

ga'yj‘:a = 5 (ga,B,'y - ga'y,ﬁ - gﬁ%a) j;ajcﬁ . (42>

Multiplying both sides by g™, using the identity g.,¢"* = ¢/ and bringing all terms to the left hand
side we obtain )
B+ 597 (9o G0 — Gap) 878 = 0. (43)
It is straightforward to confirm that the term multiplying #°%? is precisely T'* B = r op and thus we
obtain
BT i’ =0, (44)

which is the geodesic equation of motion, as required.

Exercise 3

Optional: Using the Einstein-Hilbert action

S = /d%ﬁR, (45)

show that the application of a variational principle 6S = 0 yields the Einstein field equations in vacuum,

ie.
1
Ruu - §g,u1/R =0. (46)

Solution 3

First we may write

6S =0 < 5/d4a7\/—gR:0. (47)

Now let us vary /—g, yielding

5 (V=g) = —2\(/5{_9 . (48)

Now recall from Problem Sheet 7, Exercise 3, part 4, we proved the following result:

(lIl |g|>,a = glwg;w,a . (49)

This implies that
9o =99"" G, ; (50)

and thus we may write dg as

0g = 99" ogu
= —99wog" . (51)



We may now write 0 (/—g’) as:
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= —5\/—9 G 0" . (52)
We must next consider the variation of the Ricci scalar R = g"”R,,,. We may write this as
OR =0g""R,, +g"" R, . (53)
Substituting equations and into equation yields:
5/d4x\/—gR = /d4 [ (\/ g)R—i— v—g 5R]
1
= d437 V=g [ 59
= d4x\/—g |:5 ( - g/,u/ R) + glw 5Ry,l/:|
(0g

= /d‘lx\/—g

w 09" R+ (09" Ry, + 9“”5Ruu)]

Guw + 9" 0R,) =0, (54)

where G, = (R;w — %gW R) is the Einstein tensor. It is now clear that in order for us to obtain the
Einstein field equations in vacuum, the second term in brackets in equation (54)) must vanish.

Let us now turn our attention to the variation of the Ricci tensor, 0R,,. First, recall the definition
of the Riemann curvature tensor

Ruuaﬁ = Fluu/o’,a + Fuparpuﬁ - va,f FH Fpl/oc : (55)
Next, consider the variation of the Riemann curvature tensor:
SR, 5 = Oa (01" 5) + (0T%,,) T 5+ 1", (6T7,)
- 8,3 (6FMVO¢) - (51"Np5) Fpl/oc - F’upﬁ (5pra) . (56>

This expression can be written much more succinctly in terms of covariant derivatives. The first and
fourth terms contains a partial derivative, so we consider the following:

Vo (0T"5) = 84 (0T"5) +T%,, (6T7,5) —T%,, (6T" 5) =T, (6T%,,) | (57)
Vﬁ (6FMIJQ) = 85 (6FMIJ0{) + Fuﬁp (5Fpua) - Ppﬁy (51—Wpa) - fo)ﬁ (6Fuup) . (58)
It immediately follows that the difference between equations and enables equation to be

written as

(5R“mﬂ =V, (M’“VB) — Vg (oI*,) . (59)
We may now calculate 61, as follows:

0R,s = OR",.4
= vOl <6Fal/,6’) - V5 (5Faua) ’ (6())



and thus we obtain upon relabelling indices (8 <+ v followed by f — u):
6R, = Vo (0T%,) — V, (6T%,.) . (61)
We may now write the second term in brackets in equation (54)) as:
9" 6Ruw = Va(g"or*,) =V, (¢"r°,,)
= Va(g™ore,, —g'“or”,,) | (62)

where we have let a <+ v in the second term. We may now write the second term in equation as
/d4x\/—g g oR,, = /d4x\/—g Va (g“’”éFO‘W —g'eorr,,) . (63)

To proceed further, recall Problem Sheet 7, Exercise 3, part 5, where we proved the following identity:
1
A® = —(V/—gAY) . 64
= (), ()
We may define A% from equation as
A® = ghrore,, —g"orr,, (65)

which enables us to rewrite equation as

/d%ﬁg““&RM = /d4338a (V=g'A%)
=0, (66)

since this is a surface integral, yielding a constant boundary term, and by Stokes’s Theorem vanishes.
We may finally write

4S = /d4x\/—g 09" G =0, (67)

and so we may conclude that
1
G :Rw,—§gu,,R:0 , (68)

i.e. the Einstein field equations in vacuum, as required.



